Untersuchungen in den Systemen Titan (Zirkonium, Hafnium)—Niob—Kohlenstoff

Von

P. Stecher, F. Benesovsky, A. Neckel und H. Nowotny

Aus der Metallwerk Plansee A.G., Reutte/Tirol und dem Institut für Physikalische Chemie der Universität Wien

Mit 6 Abbildungen

(Eingegangen am 15. August 1964)

Die Aufteilung der Phasenfelder in den Dreistoffen: Titan (Zirkonium, Hafnium)—Niob—Kohlenstoff wird mit Hilfe gesinterter Proben bei je einer Temperatur ermittelt. Alle drei Systeme sind durch das Auftreten großer homogener Bereiche der Mischcarbide (Ti, Nb) C_{1-x} , (Zr, Nb) C_{1-x} und (Hf, Nb) C_{1-x} charakterisiert. Nb₂C löst wenig von dem Zweitcarbid. Eine thermodynamische Betrachtung führt zu einer Abschätzung der Stabilitätsdifferenz zwischen Nb C_{1-x} und Nb₂C.

The ternary systems: Ti(Zr, Hf)—Nb—C have been examined by means of sintered specimens. The equilibria of the above mentioned systems are characterized by the occurrence of a large domain of the respective solid solutions (Ti, Nb)C_{1-x}, (Zr, Nb)C_{1-x} and (Hf, Nb)C_{1-x}. Nb₂C dissolves very little of the second carbide. Thermodynamic considerations lead to an evaluation of the difference of stability between NbC_{1-x} and Nb₂C.

Mischkörper oder Oberflächenschichten aus Carbiden der 4a- und 5a-Metalle mit bzw. auf Wolfram, Molybdän, Tantal und Niob sowie deren Legierungen sind für Hochtemperaturanwendungen von steigendem Interesse. Obzwar die bisher vorliegenden thermodynamischen Daten der am Gleichgewicht beteiligten Komponenten schon gewisse Schlüsse auf die Stabilitätsverhältnisse zulassen, sind doch hinsichtlich des Verhaltens derartiger Mehrkomponenten-Werkstoffe genaue Kenntnisse über die Phasengleichgewichte insbesondere bei den vorgesehenen Betriebstemperaturen erforderlich. In Fortführung der Untersuchungen P. Stecher u. a.: Titan (Zirkonium, Hafnium)-Niob-Kohlenstoff 1631

an solchen Dreistoffen¹ mit zwei Übergangselementen aus der 4a- und 5a-Gruppe und Kohlenstoff wurden die Kombinationen der 4a-Metalle mit Niob und Kohlenstoff in Angriff genommen.

In den Metall—Kohlenstoff-Zweistoffen der 5a-Metalle Vanadin, Niob und Tantal tritt neben dem Monocarbid auch ein metallreicheres Carbid M_2 C auf² (M =Übergangsmetall). In den Systemen Nb—C und Ta—C soll ferner eine Hochtemperaturphase der ungefähren Formel M_3 C₂³ existieren. Dagegen besteht in den Systemen der 4a-Metalle Titan, Zirkonium, Hafnium und Kohlenstoff lediglich das Monocarbid².

Die Hochtemperatur-Modifikation der 4a-Metalle ist jeweils mit den Metallen der 5a-Gruppe lückenlos mischbar^{4, 5}.

Strukturchemisch ist die Kenntnis der Löslichkeit von Titan, Zirkonium bzw. Hafnium in Nb₂C von Interesse, während die Verteilung der Metalle im Monocarbid-Mischkristall einerseits und im Metall-Mischkristall andrerseits von erheblichem praktischen Belang ist.

Während die Randsysteme Ti—C, Zr—C, Hf—C und Nb—C sowie die entsprechenden binären Metallsysteme eingehend untersucht wurden, ist in den entsprechenden Dreistoffen lediglich der lückenlose Übergang der Monocarbide TiC—NbC und ZrC—NbC bekannt^{6,7}. Die kontinuierliche Mischreihe von HfC—NbC ist erst in letzter Zeit von *H. Nowotny* und Mitarbeitern⁸ bewiesen worden.

Ausgangsmaterialien und Probenherstellung

Als Ausgangsstoffe dienten Niobpulver mit 0.5% O, 0.1% C, 0.6% Ta (H. C. Starck, Goslar); Titanhydridpulver mit 1.5% O, 0.1% C (Metal Hydrides Inc., Beverly, Mass.); Zirkoniumhydridpulver (Metal Hydrides Inc., Beverly, Mass.); Hafniumhydridpulver mit 96.9% Hf, 1.80% Zr, 0.98% H und 0.32% sonstige Verunreinigungen (Wah Chang Corp., Albany/Ore.) sowie reinster Ruß (Degussa, Frankfurt/M.).

Die Probenherstellung erfolgte wie üblich durch Drucksintern der Komponentengemische und nachfolgende Homogenisierungsglühung im Hochvak. von 10^{-4} bis 10^{-5} Torr. Bei Proben ohne freien metallischen Anteil wurde 1% Co als diffusionserleichternder Zusatz beigemischt⁶. Die Homogenisierungs-Temperaturen wurden zwecks besserer Gleichgewichtseinstellung möglichst hoch gewählt, sie waren allerdings durch den Schmelzpunkt der

¹ E. Rudy und H. Nowotny, Mh. Chem. 94, 507 (1963).

 2 Vgl. R. Kieffer und F. Benesovsky, Hartstoffe, Springer Verlag, Wien 1963.

³ R. Lesser und G. Brauer, Z. Metallkde. 49, 622 (1958); 50, 8 (1959).

⁴ Vgl. *M. Hansen* und *K. Anderko*, Constitution of Binary Alloys, McGraw-Hill, New York 1958, S. 813, 1019, 1023.

⁵ P. Duwez, J. Appl. Physics 22, 1174 (1951).

⁶ H. Nowotny und R. Kieffer, Metallforschung 2, 257 (1947).

⁷ J. T. Norton und A. L. Mowry, Trans. AIME 185, 133 (1949).

⁸ H. Nowotny, R. Kieffer, F. Benesovsky, C. Brukl und E. Rudy, Mh. Chem. **90**, 669 (1959).

Metalle und der auftretenden Eutektika nach oben begrenzt und lagen in den Systemen Ti-Nb-C, Zr-Nb-C und Hf-Nb-C (in dieser Reihenfolge) bei 1600°, 1700° und 1800° C; die Glühzeiten betrugen 50 bis 70 Stdn.

Sämtliche Proben wurden röntgenographisch (Pulveraufnahmen mit CuK α -Strahlung), der homogene Bereich von Nb₂C wurde zusätzlich auch metallographisch untersucht.

Ergebnisse

In Tab. 1, 2 und 3 sind die Ergebnisse der ausgewerteten Pulverdiagramme vereinigt; Abb. 1, 2 und 3 zeigen die Phasenfelderaufteilung der jeweiligen Dreistoffe Ti(Zr, Hf)-Nb-C.

In keinem der Systeme kommt es zur Bildung einer ternären Verbindung; man beobachtet vielmehr jeweils das charakteristische Dreiphasengleichgewicht: $MC_{1-x}-Mk + M_2C-Mk + M-Mk^*$, das durch folgende Zusammensetzungen und Gitterparameter gekennzeichnet ist:

Ti-Nb-C: bei 1600°C

$M ext{C-}Mk = (ext{Ti, Nb}) ext{C}_{0,67}$ $M_2 ext{C-}Mk = (ext{Nb, Ti})_2 ext{C}$	$a = 4,373 \text{ \AA} \ a = 3,120 \text{ \AA} \ a = 3,120 \text{ \AA}$	TiC _{0,67} in NbC _{0,67} : 46% (Ti ₂ C) in Nb ₂ C: 13%
M- $Mk = (Nb, Ti)$	c = 4,959 A $a = 3,29_0 \text{ Å}$	ß-Ti in Nb: (~ 9%), unsicher
	Zr-Nb-C: bei 17	00° C

$MC-Mk = (Zr, Nb) C_{0,7}$	$a=4,490~{ m \AA}$	ZrC _{0.7} in NbC _{0.7} : 36%
M_2 C- $Mk = (Nb, Zr)_2$ C	$a=3,\!140~{ m \AA}$	$(\mathbf{Zr}_2\mathbf{C})$ in Nb ₂ C: 9%
	$c=4,987~{ m \AA}$	
M- $Mk = (Nb, Zr)$	$a=3,302~{ m \AA}$	β -Zr in Nb: (~ 6%), unsicher

Hf-Nb-C: bei 1800°C

$MC-Mk = (Hf, Nb) C_{0,7}$	a=4,480 Å	HfC _{0,7} in NbC _{0,7} : 29%
M_2 C- $Mk = (Nb, Hf)_2$ C	$a=3,139~{ m \AA}$	$(\mathrm{Hf_{2}C}) \mathrm{~in~Nb_{2}C} \colon 8\%$
	c = 4,980 Å	
M- $Mk = (Nb, Hf)$	$a=3,\!295~{ m \AA}$	β -Hf in Nb: (~ 5%), unsicher

Trotz einer erheblichen Unsicherheit in der Gleichgewichtskonzentration im Metall-Mk scheint daraus zu folgen, daß der Gehalt an 4a-Metall in der Reihenfolge Ti—Zr—Hf abnimmt; in allen Fällen ist das Zweiphasenfeld: Monocarbid-Mk + Metall-Mk sehr ausgedehnt. Im Schnitt bei etwa 31—32 At% C reicht die Mischphasenbildung von Nb₂C in der Reihenfolge Ti, Zr bzw. Hf jeweils bis 13, 9 bzw. 8 At%. Den Verlauf der Gitterparameter zeigt Abb. 4 a—c. In Übereinstimmung mit der Größe der Metallradien wird das Gitter der Nb₂C-Phase bei Einbau von Titan verkleinert, durch Zirkonium bzw. Hafnium aufgeweitet.

* Mk = Mischkristall

Die Verkleinerung des Homogenitätsbereiches der Nb₂C-Mischphase von Titan nach Hafnium hängt teilweise mit der zunehmenden Stabilität der Monocarbide in der Reihenfolge: TiC \rightarrow ZrC \rightarrow HfC zusammen. Daneben dürfte der Größenfaktor noch eine Rolle spielen. Schließlich

Abb. 1. Phasenfeld-Aufteilung im System: Ti---Nb--C bei 1600°C; die Proben Nr. 37, 38, 39, 53, 54, 55, 56, 57 besitzen nach Analyse einen etwas höheren Kohlenstoffgehalt

ist auch der Einfluß der Temperatur zu berücksichtigen. Beispielsweise zeigen abgeschreckte, im Lichtbogenofen unter Helium hergestellte Schmelzproben teilweise andere Befunde. Im Schnitt des Subcarbids reicht das Dreiphasenfeld bei Ti—Nb—C zwar wieder bis etwa 30 At% Ti wie bei Sinterproben, bei Zr—Nb—C aber nur bis etwa 8% und bei Hf—Nb—C bis etwa 7%, das ist merklich weniger als bei den Sinterproben.

Da sich Nb₂C im Zweistoff bei 3100° C peritektisch bildet, ist verständlich, daß bei hoher Temperatur der Bereich dieser Phase zugunsten der Monocarbid-Phase eingeengt wird. Ein Hinweis für die Existenz der Phase Nb₃C₂ fand sich in den hier untersuchten Proben nicht. Das Ge-

Abb. 2. Phasenfeld-Aufteilung im System: Zr-Nb-C bei 1700°C; die Proben Nr. 30, 31, 32, 63, \$4, 65, 66, 67 besitzen nach Analyse einen etwas höheren Kohlenstoftgehalt

füge im Lichtbogen geschmolzener Proben auf dem Schnitt bei 31-32 At% C läßt die peritektische Umwandlung des Monocarbids in die Nb₂C-Phase erkennen (Abb. 5). Der weite Homogenitätsbereich des Monocarbids ist hinsichtlich der Kohlenstoff-Konzentration in der Mischphase kaum eingeengt. Die Gitterparameter auf der kohlenstoffarmen Seite der Mischphase sind merklich kleiner als jene des vollcarburierten Monocarbids, demnach liegt ein Kohlenstoffdefekt auch bei Monocarbid-Mischkristallen vor.

Proben der Reihe mit 40 At% C waren bei allen drei Systemen röntgenographisch einphasig. Die kohlenstoffarme Grenze des Homogenitäts-

Abb. 3. Phasenfeld-Aufteilung im System: Hf--Nb--C bei 1800°C; die Proben Nr. 31, 32, 33, 49, 50, 51 besitzen nach Analyse einen etwas höheren Kohlenstoffgehalt

bereiches reicht auf der Niobseite bis etwa 40 At% C und schließt sich bezüglich der Gitterparameter an die Literaturwerte² an. Auf der Seite der 4a-Metallcarbide liegt die Homogenitätsgrenze bei noch kleineren C-Gehalten. Der Verlauf der Gitterparameter von Proben bei 40 At% C ist, wie Abb. 6a—c zeigt, insofern bemerkenswert, als einheitlich im Gebiet zwischen 20 und 40 Mol% an 4a-Metallcarbid verhältnismäßig

	Tabelle 1. Röntgenographisc	che Befunde in	Niob-Titan-Koh	lenstoff-Leg	lerungen
Probe Nr.	Röntgenographisch identifizierte Phasen	MC-Phase	a M ₂ C-P	hase c	M-Phase
- -	$M + M_{s} C$		n.b.	n. b.	kaum verändert
5	$M + M_{\circ}C$		n. b.	n. b.	3.29 Å
က	$M + M_{\rm sC} + M_{\rm C}$	n. b.	n. b.	n. b.	3,29 Å
4	$M + M_{\rm sC} + M_{\rm C}$	n. b.	n. b.	n. b.	$3.29~{ m \AA}$
0	$M + M_2 C + M C$	4,373	n. b.	n. b.	$3,29~{ m \AA}$
9	M + MC	4,359			$3,29~{ m \AA}$
5	M + MC	4,358			$3,29~{ m \AA}$
x	M + MC	4,347			$3,29~{ m \AA}$
6	M + MC	4,342			$3,29~{ m \AA}$
10	M + MC	4,323			$3,29~{ m \AA}$
11	M + MC	4,319			$3,29~{ m \AA}$
12	M + MC	4,313			3,29 Å
13	M + MC	4,305			$3,29~{ m \AA}$
14	M + MC	4,297			$3,29~{ m \AA}$
15	$M + M_2 C$		n. b.	n. b.	$3,29~{ m \AA}$
16	$M + M_2 C$		n. b.	n. b.	$_{3,29}\mathrm{\AA}$
17	$M + M_2 C + M C$	n. b.	n. b.	n. b.	$3,29~{ m \AA}$
18	$M + M_2 C + M C$	4,370	n. b.	n. b.	$3,29~{ m \AA}$
19	M + MC	4,360			$3,29~{ m \AA}$
20	$M + M_2 C$		3,127	4,960	n. b.
21	$M + M_2 C$		3,127	4,958	n. b.
22	$M + M_2 C + M C$	n. b.	3,122	4,957	n. b.
23	$M + M_2 C + M C$	n. b.	n. b.	\mathbf{n} . b.	n. b.
24	$M + M_2 C + M C$	4,374	n. b.	n. b.	n. b.
25	$M + M_2 C + M C$	4,375	n. b.	n. b.	n. b.
26	$M + M_2 C + M C$	4,373	n. b.	n. b.	n. b.
27	M + MC	4,358			n . b.
28	M + MC	4,354			n. b.
29	M + MC	4,349			n. b.
30	M + MC	4,335			n. b.
31	M + MC	4,329	$\mathbf{n}.\ \mathbf{b}. = \mathbf{nicht}$ bestin	umt	n. b.

1636

P. Stecher u. a.: [Mh. Chem., Bd. 95

n. b.	n.b.	n. b.	n. b.		3,126 $4,969$	3,123 $4,968$	3,124 4,961	3,122 $4,962$ n.b.	3,120 $4,959$ n. b.	3,120 $4,958$ n.b.	n.b. n.b. n.b.	n.b. n.b. n.b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.										n. b. = nicht bestimmt	() = rontgenographisch nicht beobachtbar	[] = kein Gleichgewicht
4,328	4,318	4,312	4,304	4,289		[4,416]	1	n. b.	n. b.	n. b.	4,378	4,383	4,372	4,360	4,352	4,348	4,341	4,331	4,319	4,312	4,417	4,404	4,395	4,393	4,383	4,374	4,368	4,358	4,350	4,346	4,320
M + MC	M + MC	M + MC	M + MC	MC	M_2C	$M_2C + [MC]$	M_2C	$(M)+M_2\mathrm{C}+M\mathrm{C}$	$(M) + M_2 C + M C$	$(M)+M_2\mathrm{C}+M\mathrm{C}$	$M + M_2 C + M C$	$M + M_2 C + M C$	M + MC	M + MC	M + M C	M + MC	M + MC	M + MC	M + MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC

H. 6/1964] Titan (Zirkonium, Hafnium)—Niob—Kohlenstoff

1637

Probe Nr.	Röntgenographisch identifizierte Phasen	MC-Phase	a^{M_2C-1}	Phase c	M-Phase
1	$M + M_2 C$		n. b.	n. b.	
2	$M+M_{ m 2C}$		n. b.	n. b.	
3	$M + M_2 C + M C$	n. b.	n. b.	n.b.	
4	$M+M_{2}\mathrm{C}+M\mathrm{C}$	n. b.	n. b.	n. b.	n. b.
5	$M+M_{2}\mathrm{C}+M\mathrm{C}$	n . b.	n. b.	n . b.	n. b.
6	$M + M_2\mathrm{C} + M\mathrm{C}$	n. b.	n. b.	n. b.	3,302
7	M + MC	4,584			3,303
8	M + MC	4,634			n . b.
9	M + MC	4,651			n . b.
10	M + MC	4,661			n. b.
11	M + MC	4,663			n. b.
12	M + MC	4,667			n. b.
13	M + MC	4,669	_	_	n. b.
14	$M + M_2 C$		n. b.	n. b.	
15	$M+M_{2}\mathrm{C}$	_	n. b.	n. b.	
16	$M + M_2 C + M C$	n. b.	n. b.	n. b.	3,302
17	$M + M_2 \mathrm{C} + M \mathrm{C}$	n. b.	n. b.	n. b.	3,302
18	$M+M_{2}\mathrm{C}+M\mathrm{C}$	n. b.	n. b.	n. b.	3,303
19	M + MC	4,493			n. b.
20	M + MC	4,537			n. b.
21	M + MC	4,583			n . b.
22	M + MC	4,622			n. b.
23	M + MC	4,640			n. b.
24	M + MC	4,646			n. b.
25	M + MC	4,656			n. b.
26	M + MC	4,661			n. b.
27	M + MC	4,663			n. b.
28	M + MC	4,664			n. b.
29	M + MC	4,670			
30	M ₂ C	54 40 × 7	3,135	4,967	
31	$M_2C + [MC]$	[4, 425]	3,136	4,975	
32	M_2C	. 1.	3,140	4,988	. 1
33	$M + M_2C + MC$	n. b.	3,139	4,980	n. o.
34	$M + M_2 C + M C$	4,491	n. b.	n. b.	n. p.
30	$M + M_2 C + M C$	n. D.	n. b.	\mathbf{n}	n. p.
30	$M + M_2 C + M C$	4,499	n. b.	n. o.	n. o. m. h
37	M + MC	4,520			n. b.
38 20	M + MC	4,040			n. b. n. h
39 40	M + MC	4,000			n. b.
40	M + MC	4,500			n. b.
41	M + MC	4,090			n. D. n b
44	$M \rightarrow MC$	4 648			n b
40 11	+ MC	4 655			11. U.
44		4 659			
40 16		4 661			
47		4.671			
48	$M_2\mathrm{C}+\widetilde{M\mathrm{C}}$	n. b.	3,127	4,967	

Tabelle 2. Röntgenographische Befunde im System: Nb-Zr-C

Probe Nr.	Röntgenographisch identifizierte Phasen	MC-Phase	$a M_2$ C-	Phase c	M-Phase
49	$M_{2}\mathrm{C} + M\mathrm{C}$	n. b.	n. b.	n. b.	
50	$M_2C + MC$	n. b.	n. b.	n.b.	
51	$M_2C + MC$	n. b.	n. b.	n . b.	
52	$M + M_2 C + M C$	4,482	n. b.	n. b.	n. b.
53	$M + M_2 \mathrm{C} + M \mathrm{C}$	4,490	n. b.	n. b.	n. b.
54	M + MC	4,520			n. b.
55	M + MC	4,543			n. b.
56	M + MC	4,572			n. b.
57	M + MC	4,597			n. b.
58	M + MC	4,624			n. b.
59	M + MC	4,625			n. b.
60	MC	4,650			
61	MC	4,653			
62	MC	4,665			
63	MC	4,443			
64	MC	4,463			
65	MC	4,467			
66	$M \mathrm{C}$	4,511			
67	MC	4,523			
68	MC	4,554			
69	\dot{MC}	4,583			
70	MC	4,605			
71	$M\mathrm{C}$	4,619			
72	$M\mathrm{C}$	4,666			
73	MC	4,666.			

Tabelle 2 (Fortsetzung)

Tabelle 3. Röntgenographische Befunde in Niob-Hafnium-Kohlenstoff-Legierungen

Probe Nr.	Röntgenographisch identifizierte Phasen	MC-Phase	$a \frac{M_2C}{a}$	Phase c	M-Phase
1	$M + M_2 C$		n. b.	n. b.	n. b.
2	$M + M_2 \mathrm{C} + M \mathrm{C}$	n. b.	n. b.	n. b.	n. b.
3	$M + M_2\mathrm{C} + M\mathrm{C}$	n. b.	n. b.	n . b.	n. b.
4	M + MC	4,516			3,29
$\overline{5}$	M + MC	4,527			3,29
6	M + MC	4,572			3,29
7	M + MC	4,595			3,32
8	M + MC	4,608			3,36
9	M + MC	4,608			3,39
10	M + MC	4,607			3,42
11	M + MC	4,608			n. b.
12	M + MC	4,613			hex.
13	$M + M_2 \mathrm{C} + [M \mathrm{C}]$		3,134	4,969	n. b.
14	$M + M_2 \mathrm{C} + [M\mathrm{C}]$		3,137	4,979	n. b.
15	$M + M_2 \mathrm{C} + M \mathrm{C}$	n. b.	n. b.	n. b.	n. b.
16	M + MC	4,486	¢		3,29

Tabelle	3	(Fortsetzung)
1 ubeue	Ð	(ronseizung)

Probe Nr.	Röntgenographisch identifizierte Phasen	MC-Phase	<i>M</i> ₂ C-	$_c^{\rm Phase}$	M-Phase
17	M + MC	4,496			3,29
18	M + MC	4,520			3,29
19	M + MC	4,548			3,29
20	M + MC	4,566			3,29
21	M + MC	4,588			n. b.
22	M + MC	4,608			n. b.
23	M + MC	4,611			n. b.
24	M + MC	4,611			n . b.
25	M + MC	4,613			3,34
26	M + MC	4,612			3,37
27	M + MC	4,614			n. b.
28	M + MC	4,612			n. b.
29	M + MC	4,614			n. b.
30	M + MC	4,618			hex.
31	$M_{2}C$		3,119	4,957	
32	M_2C		3,124	4,960	
33	M_2C	,	3,137	4,974	1.
34	$M + M_2 C + M C$	n. b.	3,140	4,980	n. d.
35	$M + M_2 C + M C$	4,472	3,138	4,980	3,29
36	$M + M_2 C + M C$	4,476	n. o.	n. o.	n. D. 2 20
37	M + MC	4,484			3,49 2 20
38 20	M + MC	4,000			2.20
39	M + MC	4,000			3,49
40	M + MC	4,000			3,28
41 49	M + MC	4,070			0,20 n h
42	$M \rightarrow MC$	4 616			n.b.
40	$M \rightarrow MC$	4 613			n. h.
44	$M_{\rm aC} + M_{\rm C}$	1,010 n h	n h	n h	
46	$(M) + M_{2}C + MC$	4 442	n. h.	n. b.	n. b.
47	$M \rightarrow MC$	4.481			n. b.
48	M + MC	4,500			n. b.
49		4.442			
50^{-10}	MC	4.461			
51	MC	4,472			
52	$M\mathrm{C}$	4,494			
53	MC	4,516			
54	MC	4,545			
55	$M\mathrm{C}$	4,565			
56	$M\mathrm{C}$	4,588			
57	MC	4,606			
58	MC	4,611			
59	$M\mathrm{C}$	4,619			
60	$M\mathrm{C}$	4,619			

große Parameter auftreten. Einige Proben in diesem Gebiet wurden hinsichtlich des Kohlenstoffs mehrfach überprüft. Die $\alpha \rightarrow \beta$ -Umwandlung der 4a-Metalle ist für das gewählte Temperaturgebiet zu berück-

Abb. 4a-c. Verlauf der Gitterparameter von Nb2C in den Systemen: Ti(Zr, Hf)-Nb-C.

sichtigen, doch scheint in Systemen mit Titan und Zirkonium die Hochtemperatur- β -Form über den ganzen Bereich erhalten zu bleiben.

Abb. 5. Gefüge einer Lichtbogen-geschmolzenen Probe mit 63 At% Nb, 5 At% Ti und 32 At% C (400 fach)

Im System mit Hafnium findet man dagegen über 80 At% Hf bereits α -Hf neben Niob-Mk und Monocarbid-Mk. Abb. 3 berücksichtigt dies nicht; es wird vielmehr vollständige Löslichkeit Nb— β -Hf für

Monatshefte für Chemie, Bd. 95/6

1641

Abb. 6a--c. Verlauf der Gitterparameter von Monocarbid-Mischkristallen bei 40 At% C. Δ bezieht sich auf die vollcarburierten Monocarbide

1800°C angenommen. Der experimentell beobachtete Konodenverlauf im Zweiphasenfeld Monocarbid-Mk+Metall-Mk zeigt bei allen Systemen die höhere Stabilität der Monocarbide von 4a-Metallen gegenüber NbC. Die Verteilung von Ti (Zr, Hf) zwischen Carbidphase und Metallphase ist ähnlich wie bei Hf—Ta—C¹; in der Carbidphase reichert sich das Metall der 4a-Gruppe, in der Metallphase das Metall der 5a-Gruppe an.

Thermodynamische Betrachtungen im Dreiphasengebiet

Auf Grund der Zusammensetzung der miteinander im Gleichgewicht stehenden Phasen lassen sich Beziehungen über die Stabilität von Nb₂C gegenüber NbC_{1-y} ableiten*.

Jede der beteiligten Phasen wird dabei als binäre Mischphase aufgefaßt. Im Gleichgewicht sind die chem. Potentiale μ der Komponenten Nb, C, M in allen drei Phasen einander gleich, z. B.

$$(\mu_{Nb})_{Nb-Mk} = (\mu_{Nb})_{(Nb,M)C_{1-\mu}} = (\mu_{Nb})_{(Nb,M)_{2}C_{1-\mu}}$$

Berücksichtigt man, daß die freie Enthalpie von NbC_{1-y} bzw. Nb_2C gleich ist der Summe der chem. Potentiale

$$\begin{split} G\left(\mathrm{NbC}_{1-y}\right) &= \mu\left(\mathrm{Nb}\right) + (1-y)\,\mu\left(\mathrm{C}\right)\\ G\left(\mathrm{Nb}_{2}\mathrm{C}\right) &= 2\,\mu\left(\mathrm{Nb}\right) + \mu\left(\mathrm{C}\right), \end{split}$$

bzw.

so ergibt sich für die freie Enthalpie der Reaktion:

$$\left(2-\frac{1}{1-y}\right)\operatorname{Nb}_{Mk}+\frac{1}{1-y}\operatorname{Nb}C_{1-y,Mk}=\operatorname{Nb}_{2}C_{Mk}\left(\Delta G=0\right)$$

die Beziehung:

$$\begin{pmatrix} 2 - \frac{1}{1 - y} \end{pmatrix} RT \ln x_{Nb} + \left(2 - \frac{1}{1 - y} \right) a_{Nb-M} (1 - x_{Nb})^2 + \frac{1}{1 - y} \Delta G^{\circ} (Nb C_{1-y})$$

$$+ \frac{1}{1 - y} RT \ln x_{Nb} c_{1-y} + \frac{1}{1 - y} a_{(Nb,M)} c_{1-y} (1 - x_{Nb} c_{1-y})^2 =$$

$$= \Delta G^{\circ} (Nb_2C) + RT \ln x_{Nb_2C} + a_{Nb_2C} - (M_2C) (1 - x_{Nb_2C})^2$$

 ΔG° (NbC_{1-y}) und ΔG° (Nb₂C) sind die Standardwerte der freien Bildungsenthalpien der betreffenden Verbindungen. Die Größen *a* sind die Wechselwirkungsparameter, die im Sinne einer regulären Lösung die Abweichungen vom idealen Verhalten erfassen. Die Größen 1 — *y* sowie die Gleichgewichtskonzentrationen x_{Nb} , $x_{NbC_{1-y}}$ und $x_{Nb_{2}}$ cwurden dem Experiment entnommen, die Wechselwirkungsparameter *a* wurden

^{*} Im folgenden wird mit y der Kohlenstoffdefekt, mit x der Molenbruch bezeichnet.

a (Wechselwirkungsparameter)	in cal/g Atom bzw. Formelgew.	Bemerkung
a _{Nb-Ti}	+4000	geschätzt aus a_{Nb-Zr} und
	bzw. 0	$a_{ m Nb-Hf}$ siehe Nb—Zr
$a_{\text{NbC}_{1-y} - \text{TiC}_{1-y}}$		$pprox a_{{ m NbX}_{1-y}}$ - HfC $_{1-y}$
$a_{\mathrm{Nb}_{2}\mathrm{C}-(\mathrm{Ti}_{2}\mathrm{C})}$		Raoultscher Bereich
$a_{ m Nb-Zr}$	+ 5600	kritische Entmischungstempe- ratur im System: Nb—Zr ¹⁰
	bzw. 0	nach C. W. $Berghout^{11}$
$a_{\mathrm{NbC}_{1-y}-\mathrm{ZrC}_{1-y}}$	— 1200	$pprox a_{ ext{NbC}_{1-y}}$ - HfC $_{1-y}$
$a_{\mathrm{Nb}_{2}\mathrm{C}-(\mathrm{Zr}_{2}\mathrm{C})}$		Raoultscher Bereich
$a_{ m Nb-Hf}$	+7200 bzw. 0	$pprox a_{ m Ta-Hf}{}^{10}$
$a_{\operatorname{NbC}_{1-y}-\operatorname{HfC}_{1-y}}$		aus Mischungslücke im Pseudodreistoff ⁹
$a_{\mathrm{Nb}_{z}\mathrm{C}-(\mathrm{Hf}_{z}\mathrm{C})}$		Raoultscher Bereich

Tabelle 4. Wechselwirkungsparameter

aus experimentell ermittelten Mischungslücken errechnet oder abgeschätzt (Tab. 4).

Damit ergibt sich für die Differenz der freien Standardwerte der Bildungsenthalpien gemäß:

 $\frac{1}{1-y} \Delta G^{\circ} (\text{NbC}_{1-y}) - \Delta G^{\circ} (\text{Nb}_2\text{C}) \approx 2600 \text{ cal/Formelgew}.$

aus Nb—Ti—C (1873 °K), aus Nb—Zr—C (1973 °K) \approx 2300 cal/Fgw. und aus Nb—Hf—C (2073 °K) \approx 1800 cal/Fgw.

Diese Werte* scheinen in Anbetracht der ungenügenden Bestimmung von x_{Nb} noch etwas zu hoch zu sein; eine Berechnung mit $x_{Nb} = 1$ führt auf Werte, die um etwa 200 cal niedriger sind. Die Ursache hiefür liegt in der Unsicherheit bei der Ermittlung der Konodenlage aus relativ

^{*} Setzt man die Wechselwirkungskonstanten $a_{Nb-M} = Null$, so erhöhen sich diese Werte nur unwesentlich (30 cal/Formelgew.).

⁹ Vgl. E. Rudy, H. Nowotny, F. Benesovsky, R. Kieffer und A. Neckel, Mh. Chem. **91**, 176 (1960).

¹⁰ J. J. English, DMIC-Report 152 Battelle Memor. Instit., Columbus, Ohio, 1961. Inzwischen erschienen zwei Arbeiten über das System: Hf—Nb von A. Taylor und N. J. Doyle, J. Less Common Met. 7, 37 (1964) einerseits und M. A. Tylkina. J. A. Ziganova und E. M. Savitzki, Z. anorg. Chem. [russ.] 9, 1650 (1964) andererseits.

¹¹ C. W. Berghout, Physics Letters 1, 292 (1962).

C-reichen Legierungen. Dies läßt sich durch die Bestimmung der Differenz $\Delta G^{\circ}_{\text{NbC}_{1}-y} - \Delta G^{\circ}_{\text{MC}_{1}-y}$ als Funktion von 1 – y prüfen. Wegen der teilweise starken Abhängigkeit vom Kohlenstoffdefekt

Wegen der teilweise starken Abhängigkeit vom Kohlenstoffdefekt lassen sich über die Stabilität der Monocarbide keine vergleichenden Aussagen machen. Im übrigen sei noch bemerkt, daß das Maximum der Stabilität von Niob-Monocarbiden (und vielleicht auch anderen verwandten Monocarbiden) gar nicht bei oder nahe der stöchiometrischen Zusammensetzung, sondern merklich entfernt von dieser zu liegen scheint¹².

 12 E. K. Storms, LAMS-2674 Chemistry, Contract W-7405-Eng 36 US Atomic Energy Comm.